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ARTICLE

Flexible Design for Following Up Positive Findings
Kai Yu, Nilanjan Chatterjee, William Wheeler, Qizhai Li, Sophia Wang, Nathaniel Rothman,
and Sholom Wacholder

As more population-based studies suggest associations between genetic variants and disease risk, there is a need to improve
the design of follow-up studies (stage II) in independent samples to confirm evidence of association observed at the
initial stage (stage I). We propose to use flexible designs developed for randomized clinical trials in the calculation of
sample size for follow-up studies. We apply a bootstrap procedure to correct the effect of regression to the mean, also
called “winner’s curse,” resulting from choosing to follow up the markers with the strongest associations. We show how
the results from stage I can improve sample size calculations for stage II adaptively. Despite the adaptive use of stage I
data, the proposed method maintains the nominal global type I error for final analyses on the basis of either pure
replication with the stage II data only or a joint analysis using information from both stages. Simulation studies show
that sample-size calculations accounting for the impact of regression to the mean with the bootstrap procedure are more
appropriate than is the conventional method. We also find that, in the context of flexible design, the joint analysis is
generally more powerful than the replication analysis.
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Replication is the sine qua non for establishing that a
marker is truly associated with disease or phenotype.1–3

Little attention, however, has been given to how to design
a follow-up study (stage II) to validate findings for markers
showing evidence of association at the initial stage (stage
I) and how to interpret the results by use of information
collected from both stages. This is particularly relevant
because several studies seek to confirm their genetic as-
sociations with disease risk within large case-control and
cohort consortia.

We face several related questions in designing a follow-
up study. First, how can we exploit information from stage
I to determine the effect size to be used in assessing the
power? Here, we use the word “effect size” in the technical
sense of a measure of the distance between an alternative
hypothesis and a null hypothesis in terms of the chosen
test statistic. To test a marker’s association with the disease
risk, if a chosen test statistic (such as the likelihood-ratio
test) has a noncentral x2 distribution under the alternative
hypothesis, the effect size is the noncentrality parameter
scaled by the sample size. It depends on both the mag-
nitude of the hypothesized association parameter (e.g.,
odds ratio [OR]) and population parameters (e.g., geno-
type frequencies). The sample-size formula provides ade-
quate power and efficient use of resource only if the effect
size is appropriately assumed. For standard sample-size cal-
culation, we usually assume an effect size rather arbitrarily,
because little is known about the effect size in the study
population before the stage I study. Data from stage I can
lead to better estimation of the effect size.

Second, how do we combine the information from both
stages for the final analysis? Statistical likelihood theory

suggests that a test based on all the data is more powerful
than any test of the same type I error level that looks at
the components separately (if there is no genetic-effect
heterogeneity between the two stages). But proper control
of the type I error can be very difficult if the sample size
for stage II is chosen adaptively—that is, is based on stage
I results—because the distribution of the test statistic un-
der the null in general is not easy to derive.

Finally, how do we decide stage II sample size to ensure
adequate power for the final analysis? The sample-size cal-
culation depends on the targeted effect size as well as the
chosen test statistic mentioned above.

The typical way of choosing the effect size for the sam-
ple-size calculation in stage II is to assume the effect size
seen in stage I. Because a marker is chosen for the follow-
up study on the basis of its relatively large test statistic
(small P value), the “observed” effect size is usually biased
upward compared with its true value.4–10 This is a classic
example of the “regression to the mean”11 or “winner’s
curse”12 effect. A statistic (or any measurement) chosen
for replication because of an extreme observed value tends
to be less extreme in the second study. The magnitude of
the “regression to the mean” effect depends on the power
of the stage I study, as well as the selection criteria for
choosing markers for the follow-up study.9

Several methods have been proposed for correcting the
bias in the observed effect size for linkage studies and
population-based association studies.5–9 For example, Zoll-
ner and Pritchard9 suggested a likelihood-based approach
to estimate the effect size conditioned on observing a
“significant” signal. Sun and Bull7 used the bootstrap
procedure13,14 to account for the selection bias in the ob-
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served genetic effect in linkage studies. Wu et al.8 exam-
ined the performance of the bootstrap estimate exten-
sively in the linkage study of a quantitative trait. Here, we
extend the method of Sun and Bull7 to estimate the effect
size on the basis of the likelihood-ratio test. An additional
advantage of the bootstrap approach for this problem is
its applicability to general marker-selection criteria, in-
cluding those based on rankings, not just to criteria based
on P values.

In this article, we view the initial and follow-up studies
as parts of a single flexible design.15–17 Flexible designs were
developed originally to minimize the number of partici-
pants needed in a randomized clinical trial by exploiting
the limited data available in an interim analysis to deter-
mine final sample size. The sample size needed for stage
II and the rejection region corresponding to the final anal-
ysis depends on the observed significance level of the stage
I result. All parameters for stage I of a flexible design are
set at the start, but some particulars of the second stage
are determined by a prespecified analysis of data from the
first stage. In contrast, the two phases in the standard two-
stage design for genomewide association studies are de-
signed before any stage I data are collected, and the in-
formation from stage I does not affect the design for stage
II.18–22

We adapt the flexible design approach of Proschan and
Hunsberger16 to genetic association studies. First, we ex-
tend the technique to the general likelihood-ratio test,
including the one based on the logistic-regression model
that is most commonly used in association studies for the
adjustment of nongenetic covariates. Scherag et al.23 ap-
plied the idea of adaptive modification of sample size with
an adaptive group sequential design24 for the transmis-
sion/disequilibrium test25 used in family-based studies.
Second, to overcome the “regression to the mean” effect
caused by marker selection criteria for the follow-up study,
we use a bootstrap procedure similar to that recommended
by Sun and Bull.7 We apply the proposed procedure to the
design of a follow-up study to validate findings from a
candidate-gene study26 of non-Hodgkin lymphoma (NHL
[MIM 605027]). We conduct simulation studies to evaluate
the two-stage procedure’s conditional power and uncon-
ditional power.

Material and Methods
Problem Setup

In an association study, assume we have a stage I case-control
sample of subjects. For each subject, we have the outcomeN1

for cases, for controls, nongenetic covariatey p 1 y p 0 q # 1
vector X, and genetic covariates for M measured{G ,i p 1, … ,M}i

markers, where is a vector coded for genotype at the ithG d # 1i

marker. To assess marker i’s marginal effect on the outcome after
adjustment for the effect of nongenetic covariates, we test each

of the M null hypotheses , using the standard likeli-iH :h p 00 i

hood-ratio test, which compares the alternative model

Pr (y p 1FX,G )i T Tlog p p � X g � G h (1)i i i i1 �Pr (y p 1FX,G )i

against the null hypothesis

Pr (y p 1FX) Tlog p p � X g . (2)
1 �Pr (y p 1FX)

Denote the corresponding log-likelihood-ratio test statistic and
associated P value for the ith marker as and , respectively.T pi i

Given the testing results for individual markers from the existing
stage I data, we want to identify a set of promising markers and
design a follow-up study (called “stage II”) to further validate
them.

An Adaptive Two-Stage Procedure

Commonly, investigators select markers with nominal stage I
P values less than predetermined threshold —for example,a1

—for further study. If no marker satisfies this criterion,a p 0.11

they accept all null hypotheses , declare that alliH ,i p 1, … ,M0

considered markers are not associated with the outcome, and do
not consider a follow-up study. If, however, there are a total of

markers with P values at stage I, we propose to “adap-f(f 1 0) ! a1

tively” decide stage II sample size according to some ruleN2

, which depends on stage I data and, possibly, on otherG(D) D
predetermined constraints and factors independent of D. Later,
we suggest a specific sample-size determination rule basedG(D)
on the concept of conditional power.

Only markers with in stage I are selected for the follow-P ! a1

up study. We labeled the chosen markers , so their stage{1, … ,f}
I P values satisfy . For each marker i,p � p � … � p � a 1 �1 2 f 1

, we perform the same likelihood-ratio test on the stage IIi � f
data as in stage I and let the associated P value be . We combineqi

information from both stages with a final test statistic of the form

1 1
�1 �12 2( ) ( )S p w F 1 � p �(1 � w) F 1 � q , 1 � i � f ,i i i

where is the standard normal distribution function and wF (7)
is the predetermined weight for stage I, with , which is0 � w ! 1
fixed and therefore independent of the stage I result. This is a
commonly used method to combine P values from two indepen-
dent tests.27 For choosing the weight w, we can let orw p 0

. Following the terminology used by Skol et al.,18 we callw p 0.5
the test statistic with the “replication-based test statistic”w p 0
and the one with the “joint test statistic.”w 1 0

At the end of stage II, the rejection region for each null hy-
pothesis , , is , where c might beiH 1 � i � M {p � a and S � c}0 i 1 i

chosen to control the familywise type I error rate at the given a

level. The value c is the solution, obtained numerically, to the
equation

�1Pr [z � F (1 � a ) and1 1

1 1

2 2w z � (1 � w) z � c] p a/M , (3)1 2

where and are independent random variables following thez z1 2

standard normal distribution. For any given marker i, andp qi i

are independent, uniformly distributed random variables under
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the null hypothesis . The reason that and are independentiH p q0 i i

is because always follows the uniform distribution regardlessqi

of the stage II sample size. On the basis of equation (3), we have
. Thus, under the global null hy-Pr (p � a and S � c) p a/MiH i 1 i0

pothesis , the familywise type I error rate can beC M iH p ∩ H0 ip1 0

controlled at the level below a if c is chosen according to equation
(3).

In summary, the adaptive two-stage procedure described above
can be characterized by the parameters . It should be(a ,a,M,w,G)1

pointed out that the two-stage procedure always maintains its
type I error rate regardless of the sample size decision rule .G (7)

Outline of Stage II Sample-Size Calculation

Once the set of candidate markers for stage II have been identified
on the basis of stage I results, we want to calculate stage II sample
size to ensure that we have appropriate power to detect disease-
related markers. To calculate the sample size required to achieve
this power, we need to identify a target marker among the set of
chosen markers and to specify its effect size. We choose to focus
on the top-ranked marker (marker 1, according to the notation
above), which has a stage I and also is the marker with theP ! a1

smallest stage I P value among all studied markers, for the purpose
of sample-size calculation. We do not claim that using the top-
ranked marker is generally best, but we think it does assure us of
a realistic power evaluation for the SNP that is most likely to be
associated with disease. We consider alternative strategies in the
“Discussion” section.

In the framework of the two-stage procedure described above,
we have the freedom to adaptively choose stage II sample size
without inflating the familywise type I error rate. To exploit this
advantage, we can estimate the effect size and use it in the sample-
size calculation. Below is an outline of steps for the sample-size
calculation.

Step 1. Identify the set of follow-up markers and the top-ranked
marker on the basis of stage I data, as mentioned above.

Step 2. Estimate the effect size of the top-ranked marker.
Step 3. Estimate the stage II sample size needed for the targeted

conditional power with the effect size given by step 2
as the alternative hypothesis.

In the following sections, we describe steps 2 and 3 in detail.

Noncentrality Parameter and Effect-Size Estimation

We first describe the noncentrality parameter, effect size, and their
estimates for a single marker (without selection) and then de-
scribe the effect-size estimate for the top-ranked marker. Let G
and be the genetic and nongenetic covariates for the markerX
whose effect we are trying to replicate (here, we drop the index
for the marker). As we mentioned above, to assess a given marker’s
marginal effect, we can perform the association test based on the
log-likelihood-ratio test statistic T, which compares two models
given by equations (1) and (2). It is well known that T follows a
central distribution with d df if the marker is not associated2x

with the disease. Under the alternative specified by model (1)
with known , Self et al.28,29 showed that T asymptotically(p, g, h)
follows a noncentral distribution and provided a formula for2x

calculating the corresponding noncentrality parameter l. Shieh30

simplified the calculation and suggested that the noncentrality

parameter l can be approximately calculated by ,l ≈ N # D1

where

∗m m 1 � m
D p 2E m log � log � log , (4)X,G ( )[ ]∗ ∗1 � m 1 � m 1 � m

with

T T( )exp p � X g � G h
m p T T( )1 �exp p � X g � G h

and

∗ T ∗( )exp p � X g
∗m p .∗ T ∗( )1 �exp p � X g

Here, and are estimated using the method of Self et al.28∗ ∗p g

According to equation (3.2) in the article by Self et al.,29 we have
when . Thus, the estimation for the noncentralityD p 0 h p 0

parameter is still valid when the null hypothesis is true ( ).h p 0
For a marker that contributes to the disease risk described by

model (1), we measure its effect size as , defined by equationD

(4). The effect size depends on the coefficients (ORs) specifiedD

in the risk model, as well as the joint distribution of in the(X,G)
study population. It is easy to see that the sample size required
to detect the association between the marker and the disease for
a given power and a type I error is directly proportional to .1/D
The larger the effect size, the smaller the required sample size.

Given the test statistic T, the noncentrality parameter l can be
estimated by

(T � d), if T 1 d
l̃ p . (5){ }0, otherwise

This estimate has smaller mean squared error than the standard
maximum-likelihood estimate (MLE).31 The effect size can beD

estimated from asl̃

˜D̃ p l/N . (6)1

To design the follow-up study, we want to estimate the effect
size for marker 1, the marker with lowest stage I P value, when
its P value is below the marker selection threshold . We cana1

estimate its effect size from the test statistic by use of formulasD T1

(5) and (6). This type of estimate, called the “naive estimate” by
Sun and Bull,7 is often biased upward, because the marker is cho-
sen for its extreme test statistic (small P value). In fact, doesT1

not follow the distribution anymore. Sun and Bull7 explored2x

a few approaches based on the bootstrap procedure to adjust the
bias in the observed genetic effect.13,14 Their simulation results
suggest that a version analogous to the 0.632 estimator of Efron13

works generally well in a broad range of scenarios. The value 0.632
is the probability that a given subject will be selected at least once
in a bootstrap sample. Here, we extend the method of Sun and
Bull7 to estimate the effect size on the basis of the likelihood-
ratio test. The basic steps are given in appendix A.
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Figure 1. Threshold for the stage II P value for the rejection of
final analysis as a function of stage I P value. The familywise type
I error rate ( ) is 0.01 with 40 independent hypotheses. Thea

targeted conditional power ( ) is 0.9. The marker selection1 � b

criterion ( ) is 0.05.a1

Stage II Sample-Size Calculation Based on Conditional
Power

Once the effect size for the top-ranked marker has been estimated,
we can calculate stage II sample size, using the concept of con-
ditional power.16 Given the follow-up marker-selection threshold

and the familywise error rate a, we decide on a rejection regiona1

, , by choosing the appropriate value{p � a and S � c} 1 � i � Mi 1 i

for c based on equation (3). In fact, we need only to define forSi

markers with observed stage I .i p 1, … ,f P ! a1

For any given stage II sample size , let be the likelihood-(2)N T2 i

ratio test statistic for marker i based on stage II data. We can
calculate the conditional power given the stage I result for de-
tecting marker i ( ) as1 � i � f

(2) 2( ) ( )Pr S � cFD pPr T � x , 1 � i � f , (7)D i D i d,1�t(p )i i i

where the probability is defined under the true effect size forDi

marker i, and D represents all information collected at stage I,
including, in particular, P values, , defined ast(p )i

1

2 �1c � w F (1 � p )i
t(p ) p 1 � F , (8)i 1[ ]

2( )1 � w

with being the percentile of a central dis-2 2x 100(1 � t)th xd,1�t

tribution with df. With the true effect size , follows a(2)d D Ti i

noncentral distribution with noncentrality parameter .2x D Ni 2

From equations (7) and (8), we can see that is the thresholdt(p )i
for stage II P value for selected marker i, . We wouldq 1 � i � fi

reject the null hypothesis at the end if and .iH q ! t(p ) p � a0 i i i 1

For situations in which there is only one hypothesis, Proschan
and Hunsberger16 suggested calculating to ensure a predeter-N2

mined conditional power. Here, we decide to choose to achieveN2

a specified conditional power for the detection of the top-1 � b

ranked marker (marker 1). We can substitute the estimated (by
the naive or bootstrap-based method) effect size for marker 1D̂

into the calculation of the conditional power. The second stage
sample size can be obtained by solving the equationN2

(2) 2Pr T � x p 1 � b .ˆ [ ]D 1 d,1�t(p )1

When , the sample size is given byt(p ) � 1 � b N1 2

( )l t(p ),b,d1

N p ,2
D̃

where is the noncentrality parameter of a non-l (t(p ),b,d)1

central distribution that has d df and its percentile2x 100bth
equal to defined in equation (8). When , since2x t(p ) 1 1 � bd,1�t(p ) 11

is an increasing function of , we have(2) 2 ˆPr T � x Dˆ [ ]D 1 d,1�t(p )1

for any(2) 2 (2) 2Pr [T � x ] � Pr [T � x ] 1 1 � b N 1 0ˆ ˆD 1 d,1�t(p ) Dp0 1 d,1�t(p ) 21 1

(under the assumption that the asymptotic distribution is still
valid)—that is, there is no noncentral distribution that has its2x

percentile equal to . In these situations, we can2100bth xd,1�t(p )1

declare the association between the top-ranked marker and the
outcome on the basis of stage I information alone and can base
the sample-size calculation on the less significant markers.

When the replication-based test statistic is used—that is, w p

in equation (8)—we have , with , which is0 t(p ) p a/a p � ai 1 i 1

independent of the stage I result. If we use the joint test statistic
(such as ), is a decreasing function of —in otherw p 0.5 t(p ) pi i

words, as gets larger (i.e., there is less evidence against fromip Hi 0

stage I data), a more stringent criterion is required for the stage
II P value to reject at the end of the two-stage procedure. IniH0

figure 1, we plot t as a function of stage I P value for both joint
and replication-based statistics. Parameters used in this example
were , , and . We can see that, givena p 0.01 M p 40 a p 0.051

the same stage II sample size, the conditional power for the joint
statistic is higher than that for the replication-based statistic
when there is relatively strong evidence against the null (i.e.,
small P value) at stage I. On the other hand, when the evidence
against the null is not very strong at the initial stage, the repli-
cation-based statistic tends to have higher conditional power
than the joint test statistic does. Intuitively, this observation
makes sense. Since the joint statistic combines information from
both stages, a stage I P value far below increases the jointa1

statistic value and makes it easy to reject the null hypothesis in
the end. But a stage I P value just below requires strongera1

evidence from stage II for the final rejection of the null hypothesis
than when the stage I P value is higher. Thus, the relative per-
formance of joint and replication test statistics depend on the
result from stage I. Neither one has uniformly better conditional
power.

The Mean Conditional Power and “Unconditional” Power

When marker is a true disease-associated marker, the “uncon-∗i
ditional” power of the procedure specified by is the(a ,a,M,w,G)1

probability that marker is among the chosen markers for follow-∗i
up and declared as significant at the end of stage II. Let TP rep-
resent the true-positive (TP) selection event , i.e., the{D:p ! a }∗i 1

event that marker met the stage I criterion for carrying on to∗i
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Table 1. Stage II Sample-Size Calculation for the NHL Example (DLBCL Subtype)

aa and SNPb Pc

Naive Estimation Bootstrap Estimation

Effect
Sized

N2

Replicatione

N2

Jointf

Effect
Sized

N2

Replicatione

N2

Jointf

.05:
rs1800629 5.7 # 10�4 2.03 367 340 1.11 668 618
rs900253 7.4 # 10�4 1.93 386 378 1.01 740 725

.01:
rs1800629 5.7 # 10�4 2.03 844 821 1.11 1,536 1,495
rs900253 7.4 # 10�4 1.93 887 902 1.01 1,700 1,728

.005:
rs1800629 5.7 # 10�4 2.03 1,036 1,020 1.11 1,885 1,857
rs900253 7.4 # 10�4 1.93 1,088 1,117 1.01 2,086 2,141

a is the familywise type I error rate.a
b The SNP chosen for the sample size calculation.
c The observed stage I P value.
d Estimated effect size measured in units of 200 subjects.
e Sample size required when the replication-based test statistic is used with and . It is the1 � b p 0.9 a p 0.1/481

total sample size for cases and controls combined. The ratio of case and control sample sizes remains the same as in
stage I.

f Sample size required when the joint test statistic is used with and .1 � b p 0.9 a p 0.1/481

stage II, where D represents all information collected at stage I,
we can express the unconditional power as

Pr (TP) #Pr (S � cFTP)∗i

( )p Pr (TP) # E Pr S � cFD , (9)∗[ ]DFTP i

where all probabilities are defined under the alternative and
is the expectation of the conditional powerE [Pr (S � cFD)]∗DFTP i

under the condition of a TP event, hereafter called the “condi-
tional mean of the conditional power” (CMCP). Usually the
power cannot be calculated analytically because it depends on
the distribution of D and the complicated stage II sample-size
decision rule , although it can be evaluated empiricallyG(D)
through simulation studies.

We can see from equation (9) that the power of the two-stage
procedure depends on and CMCP. As one might expect,Pr (TP)
we can increase the at the cost of increasing stage I samplePr (TP)
size and/or relaxing the marker-selection criterion by choosing a
larger . CMCP depends on stage II sample-size decision rulea1

. From the perspective of stage II design, we prefer a sample-G(7)
size decision rule that has the CMCP close to its desired level,G(7)
the target conditional power .1 � b

Application to NHL Study

Profound disruption of immune function is an established risk
factor for NHL. Wang et al.26 conducted a large-scale association
study to evaluate common genetic variants in immune genes and
their role in lymphoma. Cases were identified from four Surveil-
lance, Epidemiology, and End Results (SEER) registries. Controls
were identified by random-digit dialing and from Medicare eli-
gibility files. Multiple SNPs from 36 candidate immune genes were
genotyped. Their results suggested that perturbations in inflam-
mation stemming from common genetic variants in proinflam-
matory cytokine genes TNF (MIM 191160) and LTA (MIM 153440)
could contribute to the development of NHL.

We showed how our procedure might work in practice if we
sought to calculate the sample size for stage II, using the study
of Wang et al.26 for stage I data. We wanted to design a follow-

up study to validate and/or replicate findings of SNPs associated
with the risk for the diffuse large B-cell lymphoma (DLBCL) sub-
type. Since most (180%) of the subjects in the stage I study were
whites (of European descent), we included only whites (318 pa-
tients with the DLBCL subtype and 766 controls) in the stage I
data for this working example. A focus on whites allows com-
parisons of our results with those from the International Lym-
phoma Epidemiology Consortium (InterLymph),33 a voluntary
consortium established in 2000 to facilitate collaboration be-
tween epidemiological studies of lymphoma worldwide.

For the stage I data set, there were 48 informative SNPs. Each
SNP was analyzed using a multiplicative model with adjustment
for age (�54 years, 55–64 years, or �65 years) and sex. The test
for association was based on the likelihood-ratio test (with 1 df).
Six SNPs had an observed P value !.05. A marker-selection cri-
terion of would identify two SNPs, rs1800629a p 0.1/48 ≈ 0.0021

and rs909253, for the follow-up study, with observed ORs of 1.54
and 1.40, respectively, on the basis of the multiplicative model.
In table 1, we calculated the effect size and sample size required
for each chosen SNP, using naive and bootstrap estimates for the
targeted conditional power and various familywise1 � b p 0.9
error rates: , 0.01, or 0.005.a p 0.05

To estimate the effect size for the second-ranked SNP
(rs909253), we removed the top-ranked SNP (rs1800629) from the
data set and treated the second-ranked SNP as the “top-ranked”
one observed in the remaining data. The same bootstrap proce-
dure then can be applied to the remaining data set to estimate
the effect size of rs909253. Preliminary simulation results sug-
gested that using this strategy to estimate the effect size of the
second-ranked marker still outperformed the naive method (re-
sults not shown).

For either SNP, the bootstrap estimated effect size was 46% less
than the naive estimate (table 1). As a result, the sample size
estimated by the naive method for stage II was just above half
the sample size suggested by the bootstrap method. Simulation
results (see section “Simulation Results: Effect-Size Estimates”)
demonstrate that the bootstrap estimate, in general, is more ac-
curate and precise than is the naive estimate. Thus, we recom-
mend using the design based on the bootstrap estimate.
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In addition to the effect size, we were also interested in OR
estimation. The same bootstrap procedure was used to correct the
bias in the naive estimate (based on MLE) of OR. The bootstrap-
based OR estimates were 1.29 and 1.18 for SNPs rs1800629 and
rs909253, respectively. They were much smaller than their orig-
inal MLEs (1.54 and 1.40). We compared these estimates with the
ORs reported by Rothman et al.,33 who performed a pooled anal-
ysis restricted to whites within InterLymph. Rothman et al.33

studied the association between 12 candidate SNPs (including
rs1800629 and rs909253) and the risk of NHL (and subtypes) in
whites. For the DLBCL subtype, there were 11,000 cases and 3,500
controls (about 25% of samples were from the study of Wang et
al.26) contributed from seven studies that had genotyped both
SNPs. On the basis of the multiplicative model, with adjustment
for age, sex, and study center, the estimated ORs for rs1800629
and rs909253 were 1.29 and 1.16, respectively, surprisingly close
(and way too close than we should expect) to the 1.29 and 1.18
bootstrap estimates and much lower than the 1.54 and 1.40 naive
estimates. Since the InterLymph pooled analysis was based on a
large sample size, we expect its OR estimates to be accurate. Thus,
it appears that the bootstrap estimate is more appropriate than
is the naive estimate. This is consistent with simulation results
(see section “Simulation Results: Effect-Size Estimates”).

Simulation Design

We conducted simulation studies to evaluate the performance of
the bootstrap-based effect-size estimate and to investigate the size
and conditional and unconditional power of the proposed adap-
tive two-stage procedure in the setting of typical candidate-gene
association studies. We considered the following scenario to cor-
respond to our NHL example. In a genetic association study of
41 candidate binary markers (SNPs), we collected either 300 or
500 cases and controls, with the number of controls always equal
to the number of cases, from the study population at stage I. For
simplicity, we assumed that all SNPs were independent (this as-
sumption was not needed for the proposed procedure) and that
only SNP 1 was associated with the disease through the disease-
risk model

Pr (y p 1)
log p p � xg � gh ,

1 �Pr (y p 1)

where x was a nongenetic dichotomous covariate with the value
of 0 or 1 and g was the coded variable (under the assumption of
a dominant model) for the disease-associated SNP with forg p 1
genotypes having at least one copy of the risk-elevated allele and

otherwise. For the analysis, we also assumed the dominantg p 0
model. We let the OR for the nongenetic covariate x beexp (g)
1.5 and varied the OR for the disease-associated SNPexp (h)
among 1.3, 1.4, 1.5, and 1.6. The joint distribution of in the(x,g)
general population was given as (0.4, 0.1, 0.35, 0.15) for (x p

, , , and , re-0, g p 0) (x p 0, g p 1) (x p 1, g p 0) (x p 1, g p 1)
spectively. Given the joint distribution of , the OR, p, was(x,g)
chosen in such a way that disease prevalence was 0.1. Genotypes
at a null marker were generated randomly (independent of case
and control status) on the basis of a randomly chosen minor-
allele frequency. For each stage I sample size (300 or 500 cases)
and OR for the disease-associated SNP, we simulated 2,000 stage
I data sets for the purpose of various performance evaluations.

Results
Simulation Results: Effect-Size Estimates

We compared the naive method with the bootstrap
method for estimating the effect size of the top-ranked
marker. We were interested only in evaluating their per-
formances in situations when a TP selection was made—
that is, when the disease-associated marker had a stage I

. If the disease-associated marker is not chosen forP ! a1

the follow-up study, the effect-size estimation has no im-
plication for conditional power, since the conditional
power is always zero in those situations.

For each simulated stage I data set with a TP selection,
its top-ranked marker might or might not be the true dis-
ease-associated SNP. Table 2 summarizes the performance
of two estimates in terms of bias and root mean squared
error (RMSE) of the estimated effect size for each sample
size and OR scenario. Results for effect-size estimation are
measured in units of per 200 subjects—that is, we used
200D, with D as the estimated or true effect size. Results
are stratified by whether the top-ranked SNP is the disease-
associated or a null SNP. The “true” effect size for the
disease-associated SNP is given by equation (4). The true
effect size for a null marker is 0.

When the top-ranked SNP is a null marker, the bootstrap
estimate always has less bias and less RMSE than does the
naive estimate. When the top-ranked SNP is the disease-
associated marker, we can see from table 2 that the boot-
strap estimate, in general, is more accurate and precise
than is the naive estimate. The advantage of the bootstrap
estimate is most obvious in situations where the effect size
and/or sample size is relatively small. When the effect size
is large (OR p 1.6) and the stage I sample size is 500 cases
and 500 controls, the estimated bias and RMSE are com-
parable for both methods, though the estimate appeared
slightly favorable compared with the naive method.

From the operational point of view, we are interested
in the proximity between the estimate and the disease
marker’s true effect size, regardless of whether the top-
ranked marker is the disease-associated or null marker.
Simulation results suggest that the bootstrap estimate is,
in general, a better approximation (smaller RMSE) of the
disease marker’s effect size than is the naive estimate (re-
sults not shown).

Simulation Results: Type I Error

We have shown that the “unconditional” familywise type
I error rate can be controlled below a by use of the thresh-
old c chosen by equation (3). Results on 40 independent
null markers in simulated data sets can be used to see
whether the false-positive rate is close to the nominal
level. For each simulated stage I data set D, we identified
the set of markers with their unadjusted P values . Let! a1

stage I P values for selected markers be , . Similarp 1 � i � fi

to the power calculation given in equation (9), by assum-
ing marker independency, we can calculate the “condi-



Table 2. Comparison of Bootstrap and Naive Methods for Estimating the Effect Size of the Top-Ranked Marker

, OR,N1

Effect Size,
and aa1

Disease-Associated Markere Null Markerf

Bias RMSE Bias RMSE

Proportiong Naiveh Bootstrapi Naiveh Bootstrapi Proportiong Naiveh Bootstrapi Naiveh Bootstrapi

300:
1.3:

.67:
.05 .58 1.81 .73 2.08 1.08 .42 2.20 1.16 2.39 1.35
.5/41 .86 2.24 .99 2.42 1.28 .14 2.90 1.59 3.02 1.75
.2/41 .93 2.63 1.28 2.77 1.52 .07 3.29 1.84 3.33 1.90
.1/41 .96 3.05 1.62 3.15 1.82 .04 3.49 2.03 3.51 2.07

1.4:
1.11:

.05 .64 1.65 .52 2.09 1.21 .36 2.26 1.18 2.38 1.28

.5/41 .86 2.06 .80 2.38 1.37 .14 2.88 1.57 2.96 1.65

.2/41 .95 2.45 1.10 2.69 1.58 .05 3.29 1.86 3.35 1.92

.1/41 .97 2.88 1.46 3.07 1.87 .03 3.58 1.99 3.60 2.02
1.5:

1.66:
.05 .69 1.34 .17 1.93 1.28 .31 2.30 1.21 2.47 1.37
.5/41 .88 1.65 .39 2.11 1.34 .12 2.97 1.65 3.12 1.83
.2/41 .93 2.10 .75 2.45 1.51 .07 3.63 2.14 3.75 2.31
.1/41 .96 2.46 1.07 2.74 1.70 .04 3.99 2.43 4.08 2.55

1.6:
2.20:

.05 .76 1.11 �.08 1.94 1.53 .24 2.36 1.26 2.54 1.43

.5/41 .90 1.40 .13 2.06 1.54 .10 3.01 1.70 3.17 1.91

.2/41 .95 1.76 .42 2.28 1.61 .05 3.58 2.15 3.73 2.35

.1/41 .97 2.08 .71 2.51 1.73 .03 4.17 2.66 4.31 2.86
500:

1.3:
.67:

.05 .65 .84 .19 1.07 .59 .35 1.34 .69 1.42 .76

.5/41 .88 1.09 .35 1.26 .68 .12 1.72 .92 1.77 .97

.2/41 .94 1.38 .58 1.50 .84 .06 1.99 1.12 2.04 1.17

.1/41 .97 1.58 .75 1.69 .98 .03 2.32 1.38 2.36 1.41
1.4:

1.11:
.05 .71 .78 .07 1.20 .87 .29 1.40 .73 1.49 .81
.5/41 .87 .97 .21 1.31 .90 .13 1.75 .96 1.81 1.02
.2/41 .94 1.20 .39 1.47 .99 .06 2.07 1.18 2.10 1.23
.1/41 .96 1.41 .58 1.63 1.09 .04 2.19 1.29 2.22 1.34

1.5:
1.66:

.05 .81 .48 �.25 1.11 1.02 .19 1.44 .77 1.53 .85

.5/41 .91 .62 �.14 1.13 1.00 .09 1.78 .98 1.84 1.05

.2/41 .95 .82 .02 1.22 .99 .05 2.08 1.20 2.14 1.27

.1/41 .98 .98 .17 1.32 1.01 .02 2.34 1.42 2.38 1.47
1.6:

2.20:
.05 .86 .33 �.38 1.21 1.27 .14 1.47 .79 1.56 .88
.5/41 .94 .45 �.30 1.21 1.26 .06 1.85 1.04 1.92 1.13
.2/41 .97 .58 �.18 1.22 1.22 .03 2.10 1.23 2.16 1.30
.1/41 .98 .75 �.03 1.28 1.19 .02 2.41 1.48 2.46 1.54

a N1 is the number of cases at stage I. The numbers of cases is the same as the number of controls. The OR is for having the high-
risk allele (a dominant model). Effect size is the true effect size for the disease-associated marker (measured in units of 200 subjects).

is the P value threshold for follow-up marker selection.a1
e Results are summarized over data sets that have a TP selection (i.e., the disease-associated marker has ) and that have theP ! a1

disease-associated marker as their top-ranked marker
f Results are summarized over data sets that have a TP selection and that have a null marker as their top-ranked marker
g Proportion is the number of data sets with a TP selection whose top-ranked marker is the disease-associated (or null) marker divided

by the number of data sets with a TP selection.
h The naive method was used for the effect-size estimation.
i The bootstrap method was used for the effect-size estimation.
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Table 3. Familywise Type I Error for Final Analyses

aa1

Sample Size p 300 Sample Size p 500

ba p .01 ba p .05 ba p .01 ba p .05

Jointc Replicationd Jointc Replicationd Jointc Replicationd Jointc Replicationd

.05 .010 .010 .049 .050 .010 .010 .047 .048

.5/40 .010 .010 .049 .048 .009 .010 .047 .047

.2/40 .010 .009 .048 .047 .010 .009 .047 .046

.1/40 .011 .010 .049 .049 .010 .010 .049 .049

a is the P value threshold for follow-up marker selection.a1
b a is the nominal familywise type I error rate.
c The analysis is based on the joint test statistic.
d The analysis is based on the replication-based test statistic.

Table 4. Average Actual Conditional Power
of Joint Analysis

ORa

and ba1

cN p 3001
cN p 5001

Naived Bootstrape Naived Bootstrape

1.3:
.05 .31 .61 .54 .82
.5/41 .31 .56 .51 .78
.2/41 .34 .53 .50 .73
.1/41 .38 .53 .52 .70

1.4:
.05 .52 .79 .73 .90
.5/41 .50 .75 .71 .88
.2/41 .50 .72 .69 .85
.1/41 .52 .69 .68 .83

1.5:
.05 .70 .89 .85 .93
.5/41 .67 .87 .83 .93
.2/41 .65 .83 .81 .92
.1/41 .64 .80 .80 .91

1.6:
.05 .79 .92 .89 .94
.5/41 .77 .91 .88 .94
.2/41 .75 .89 .87 .93
.1/41 .74 .87 .86 .93

a OR for having the high-risk allele (a dominant
model).

b is the P value threshold for follow-up markera1

selection.
c is the number of cases at stage I. The number ofN1

controls is the same as the number of cases.
d The naive method was used for the effect-size

estimation.
e The bootstrap method was used for the effect-size

estimation.

tional” familywise error rate (condition on D) under the
global null hypothesis asCH0

f

Pr max s � cFDC( )H i0
ip1

f f

p 1 � Pr [q � t(p )] p 1 � t(p ) ,C� �H i i i0
ip1 ip1

where is stage II P value and is given by equationq t(p )i i

(8). If no marker can be selected from stage I, the “con-
ditional” familywise error rate is 0. Thus, the familywise

error rate can be estimated as the average “conditional”
familywise error rate over all simulated data sets.

Simulation results are summarized in table 3. It is clear
from the table that the familywise error rates for various

, a, and sample sizes are very close to their nominala1

levels. When there is linkage disequilibrium between
markers, we expect that the actual type I error rate should
be below its nominal level because of the conservative
nature of the Bonferroni correction.

Simulation Results: Conditional Power

To evaluate the impact of different effect-size estimates on
the design in terms of conditional power, we can compare
their estimated CMCP defined in equation (9) and see
which one is closer to the nominal level . Given a1 � b

simulated stage I data set with a TP selection, its actual
conditional power can be calculated analytically from
equation (7) by use of the sample size estimated by either
the naive or bootstrap method. We can empirically eval-
uate CMCP, using the average actual conditional power
over simulated stage I data sets with a TP selection. In the
simulation, we let the familywise type I error (a) be 0.01
and the target conditional power ( ) be 0.9. In table1 � b

4, we provide the estimated CMCP for various sample
sizes, ORs, and marker-selection criterion . The resultsa1

shown in table 4 are based on the joint test statistic
( ). It can be seen from table 4 that the design usingw p 0.5
the bootstrap estimate has a CMCP closer to the target
value ( in this case) than that of the design1 � b p 0.9
using the naive estimate. This is also true for the repli-
cation-based test statistic (results not shown). Similar to
the results shown in table 2, the advantage of using the
bootstrap estimate is particularly striking when the effect
size and/or sample size is relatively small. When the OR
is 1.6 with a sample size of 500 cases and 500 controls,
we notice from table 4 that the CMCP achieved using the
bootstrap estimate is slightly higher than the target value,
because of the underestimation of the effect size.

We can stratify the results according to whether the top-
ranked marker is the disease-associated marker. For both
categories, the average actual conditional power by use of
the bootstrap method is higher than that by use of the
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Figure 2. “Unconditional” power of the adaptive two-stage procedure by use of the joint statistic under various ORs and stage I
marker selection criterion ( ). The stage I sample size is 500 cases and 500 controls. The familywise error rate is controlled at 0.01a1

with a total of 41 independent hypotheses. For each simulated stage I data set, the marker with the lowest stage I P value is used
for stage II sample-size calculation. Its effect size is estimated by the bootstrap method. Stage II sample size is calculated using the
joint statistic for the corresponding target conditional power. The “unconditional” power is estimated according to formula (9) on the
basis of 2,000 simulated stage I data sets.

native method and is closer to the target level in most
scenarios (results not shown).

Simulation Results: “Unconditional” Power

We evaluated the “unconditional” power of the two-stage
procedure, using the joint statistic and bootstrap-based
effect-size estimate. In figure 2, stratified by , we plota1

the unconditional power against various target condi-
tional powers ranging from 0.55 to 0.9. We show only the
values for ORs of 1.3 and 1.6. Patterns for ORs of 1.4 and
1.5 were similar. From figure 2, we can see that the power
increases as the marker selection criterion gets largera1

(i.e., less restrictive).
Finally, we tried to make a direct comparison between

the two-stage procedure that uses the joint statistic and
the one that uses the replication statistic. To make a fair
comparison, two procedures should use the same stage II
sample-size decision rule. We chose the common rule
based on the replication statistic with the bootstrap-esti-
mated effect size. Results are shown in figure 3 for a p1

and 0.5/41, with ORs of 1.3 and 1.6. Patterns are0.05
similar for other levels and for ORs of 1.4 and 1.5 (resultsa1

not shown). It is clear that it is generally more powerful
to use the joint statistic in the two-stage procedure than
to use the replication-based statistic in all considered
scenarios.

Discussion

An independent follow-up study is as integral to the es-
tablishment of true associations as is the original “discov-
ery” study.1–3 The design of these follow-up studies, how-
ever, may lead to underpowered studies if the optimistic
estimate of the effect size from the primary study is used
in the sample-size determination. We proposed to use the
idea of a flexible design,15–17 originally developed for ran-

domized clinical trials, to determine sample size for the
follow-up study adaptively based on results from stage I,
while controlling the global type I error properly. We
found that the bootstrap-based estimate of effect size is,
in general, more accurate and more precise than is the
naive estimate. The naive estimate tends to lead to an
underpowered study, regardless of whether the final anal-
ysis uses data from both stages or only from the follow-
up study. By contrast, the sample-size calculation based
on the bootstrap-estimated effect size leads to a study with
(conditional) power closer to the nominal level. In the
context of a flexible design, we see the advantage of a
joint analysis of combined original and follow-up data
over a replication analysis of the follow-up study in which
the original data are excluded, as advocated by Skol et al.18

for standard two-stage design.
There are now numerous consortial efforts, such as

InterLymph,34 that have been formed specifically to allow
similarly designed studies to replicate initial associations
with adequate power and thus to determine which of the
reported results from any individual study is a true finding,
as opposed to a false-negative or false-positive finding. We
believe the flexible two-stage design has a very relevant
and thus wide application in the consortial setting. These
consortia often involve more than a dozen studies and
several thousand cases and controls (e.g., the InterLymph
Consortium34). As such, a replication effort often involves
only a portion of the studies, cases, and controls contained
in any given consortia. For these consortial efforts, it is
critical to be able to determine the sample size needed for
confirmation of an initial positive finding. The proposed
procedure is also applicable in the setting in which the
same study is divided into two stages. It can help research-
ers to decide whether their original planned stage II sam-
ple size is adequate given the effect size seen in stage I.

Although the adaptive design provides flexibility in
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Figure 3. “Unconditional” power comparison between the two-stage procedure using the joint statistic and that using the replication
statistic (Repl.) under various ORs and stage I marker-selection criterion ( ). The stage I sample size is 500 cases and 500 controls.a1

The familywise error rate is controlled at 0.01, with a total of 41 independent hypotheses. For each simulated stage I data set, the
marker with the lowest stage I P value is used for stage II sample-size calculation. Its effect size is estimated by the bootstrap method.
The stage II sample size is calculated using the replication-based test statistic for the corresponding target conditional power. The
same sample-size decision rule is applied to both procedures, to ensure a fair comparison. The “unconditional” power is estimated
according to formula (9) on the basis of 2,000 simulated stage I data sets.

choosing the sample size for stage II according to the re-
sults from stage I, there are limitations on what test sta-
tistic can be used for the final analysis. For example, the
joint statistic proposed by Skol et al.18 cannot be used in
this framework because its distribution under the null be-
comes intractable once the stage II sample size is chosen
according to the stage I result. For the adaptive design, we
define the final test statistic by combining P values from
both stages according to a prespecified weight. On the
basis of the results reported by Proschan,35 we do not ex-
pect that other ways of combining test statistics from the
two stages—such as the method of Bauer and Kohne,15

based on Fisher’s combination test, to combine the P val-
ues—will substantially affect the operating characteristics
of the adaptive design. More research on how to combine
evidence from two stages may lead to further improve-
ments in the performance of the procedure.

In the proposed two-stage procedure, we use the stan-
dard likelihood-ratio test based on the logistic-regression
model as the basic test statistic. The theoretical framework
for the effect-size estimation under a generalized linear
model is given by Self et al.28,29 and Shieh.30 It is straight-
forward to incorporate other generalized linear models
into this adaptive procedure. Thus, the proposed design
can be used for studying quantitative as well as binary
traits. Also, because of the general purpose of the likeli-
hood-ratio test, we can use this procedure to design a fol-
low-up study to validate the interaction (e.g., gene-gene
or gene-environment) observed at stage I.

To correct the bias in the observed effect size of the
selected marker, we use a bootstrap procedure analogous
to the 0.632 estimator of Efron.13 The 0.632 estimate is
most appropriate in situations where the bias in the ob-
served effect size (the naive estimate) is moderate. When
the bias is more severe, such as in genomewide association

studies, other types of bootstrap estimates, including the
shrinkage estimate7,8 and the 0.632� estimate36 might be
potentially helpful. Further research on bootstrap-based
estimates is needed.

Since the sample-size calculation depends on the effect
size, we tried to estimate the effect size directly and
avoided estimating the ORs and allele frequencies sepa-
rately. In the simulation results presented above, we
showed the performance of the bootstrap estimate for
markers with varying ORs but a fixed genotype frequency.
Using simulations, we also studied the bootstrap estimate
for markers with a different genotype frequency. We found
that the performance of the bootstrap estimate depends
on both the OR and the genotype frequency but mainly
on the effect size (results not shown).

We also evaluated the bootstrap estimate when the
marker-disease association was evaluated through a robust
2-df likelihood-ratio test—that is, we modeled the genetic
effect of a SNP, using a 2-df covariate, even though the
(simulated) true underlying disease model was dominant.
We found, through simulations, that the advantage of the
bootstrap estimate over the naive estimate persisted (re-
sults not shown).

In the proposed design, we allow multiple markers with
stage I P values below a threshold to be chosen for the
follow-up study. The sample-size determinations based on
the individual markers that are selected will vary. We fo-
cused on the sample-size calculation for detecting the as-
sociation with the marker that had the lowest observed
stage I P value. The estimated effect size for this top-ranked
marker can be regarded as a surrogate estimate of maxi-
mum effect size among all studied markers, even though
the top-ranked marker might not be the marker with the
largest true effect size. Thus, the sample size estimated on
the basis of this strategy can be thought of as the mini-



550 The American Journal of Human Genetics Volume 81 September 2007 www.ajhg.org

mum sample size required for the detection of the largest
effect size. This strategy is most appropriate for situations
in which the top-ranked marker has a relatively high prob-
ability of being a disease-associated marker, such as in can-
didate-gene association studies in which dozens or hun-
dreds of markers are studied at stage I. This strategy might
not be appropriate for genomewide association studies
in which up to half a million markers are tested and
thousands of markers are chosen for follow-up study. Un-
less there are a few disease-associated markers with a rel-
atively strong effect, it is likely that the top-ranked maker
is a false-positive finding. A possible approach is to do the
sample-size calculation on the basis of the average effect
size of the K top-ranked SNPs, with K chosen according
to the detection probability (M. Gail, written communi-
cation, and Zaykin and Zhivotovsky37). That is, we choose
K to ensure that the probability of including the disease-
associated SNP among the top K ranked SNPs is sufficiently
large. Some assumptions about the disease-associated SNP
are required for the calculation of detection probability.
More conservative approaches, such as the use of the effect
size of the Kth-ranked SNP, may be unnecessarily expen-
sive. Clearly, more research is needed in this area.

As shown in the simulation studies, in the setting of a
flexible design, the joint analysis is, in general, a better
way to gather all the evidence about the hypothesis than
is the replication-based analysis. The joint analysis is not
a pure replication, however, because it reuses the original
data. On the other hand, an independent replication anal-
ysis of a second study can show that the finding is robust.
But, if the stage II study is done in the same setting (such
as use of the same design or the same population) and
uses the same methods as in the first one, we feel the joint
analysis is more appropriate.

In summary, we have proposed a design for follow-up
studies that takes advantage of information gathered from
the initial phase of study. Software can be found at our
Web site (K.Y.’s Web site). Extensions of our approach can
lead to a more efficient design for follow-up studies.
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Appendix A
Bootstrap Algorithm for Effect-Size Estimation

The basic steps for bootstrap-based effect size estimate
are as follows.

a. On the basis of the observed stage I data, identify the
top-ranked marker (with stage I ) and obtainP ! a1

the naive estimate for the effect size in accordance(0)D

with equations (5) and (6).

b. Generate B bootstrap samples from the original data
set.

c. For each of bootstrap samples, do theb p 1,…,B
following.

1. Perform the likelihood-ratio test on each marker,
and get the corresponding P value.

2. Let if no marker has ;s p 0 P ! a s p 1b 1 b

otherwise.
3. When , identify the top-ranked marker,s p 1b

and obtain , the naive estimation of its effect(b)d

size, on the basis of the “out-of-bag” sample. The
out-of-bag sample consists of subjects not being
sampled for the bth bootstrap sample.

d. The bootstrap estimation of the effect size for the
observed most promising marker is given by

(b)� d
b:s p1b(0)D̃ p 0.368D � 0.632 . (A1)B� I(s p 1)b

bp1

The procedure does not use bootstrap samples where no
marker has in the final effect-size estimation, norP ! a1

are they included in the denominator of the right-hand
term for in equation (A1). Also, in the above effect-sizeD̂

estimation procedure, the top-ranked marker (if its P value
is ) identified in each bootstrap sample could vary from! a1

sample to sample and be different from the one based on
the observed data. The main reason is that we want the
bootstrap step to reflect the uncertainty in the top-ranked
marker selection as it does in the observed stage I data.
Sun and Bull7 and Ambroise and McLachlan32 provided
more justifications for using this type of bootstrap step.

Web Resources

The URLs for data presented herein are as follows:

K.Y.’s Web site, http://dceg.cancer.gov/about/staff-bios/Yu-Kai
(for software)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for NHL, TNF, and LTA)
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